

FORWARD LOOKING STATEMENTS

This presentation contains "forward-looking statements" within the meaning of Canadian securities legislation. Such forward-looking statements concern the Company's strategic plans, completion and exercise of the Tonopah option agreement, timing and expectations for the Company's exploration and drilling programs, estimates of mineralization from historic drilling, geological information projected from historic sampling results and the potential quantities and grades of the target zones. Such forward-looking statements or information are based on a number of assumptions, which may prove to be incorrect. Assumptions have been made regarding, among other things: conditions in general economic and financial markets; accuracy of historic assay results; geological interpretations from drilling results, timing and amount of capital expenditures; performance of available laboratory and other related services; future operating costs; and the historical basis for current estimates of potential quantities and grades of target zones. The actual results could differ materially from those anticipated in these forward-looking statements as a result of the risk factors including: the ability of the Company to complete the Tonopah lease option, the timing and content of work programs; results of exploration activities and development of mineral properties; the interpretation and uncertainties of historic mineral estimates, and other geological data; receipt, maintenance and security of permits and mineral property titles; environmental and other regulatory risks; project costs overruns or unanticipated costs and expenses; availability of funds; failure to delineate potential quantities and grades of the target zones based on historical data, and general market and industry conditions. Forward-looking statements are based on the expectations and opinions of the Company's management on the date the statements are made. The assumptions used in the preparation of such statements, although considered reasonable at the time of preparation, may prove to be imprecise and, as such, readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date the statements were made. The Company undertakes no obligation to update or revise any forward-looking statements included in this presentation if these beliefs, estimates and opinions or other circumstances should change, except as otherwise required by applicable law. Certain scientific and technical information relating to the Tonopah West Project is based on and derived from the NI 43-101 report prepared for Blackrock entitled "Technical Report and Estimate of Mineral Resources for the Tonopah West Silver-Gold Project, Nye and Esmeralda Counties, Nevada, USA" effective April 28, 2022 (the "Technical Report"). Certain scientific and technical information relating to the Silver Cloud Project is based on and derived from the NI 43-101 report prepared for Blackrock entitled "Technical Report on the Silver Cloud Property, Elko County, Nevada" effective July 29, 2020.

William C. Howald, Certified Professional Geologist and a qualified personas as defined under NI43-101, has reviewed and approved the contents of this presentation.

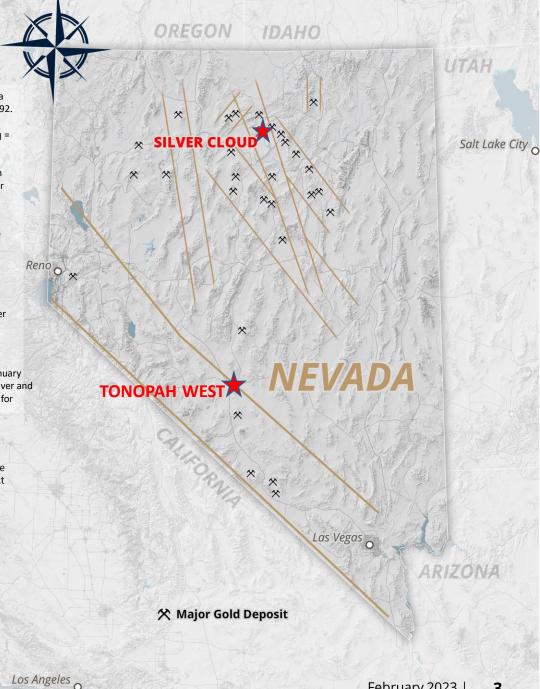
Tonopah West: 100% Controlled District Leading Package

- Situated on patented claims, project represents the western extension of the famed Tonopah silver district with control over more than half of the second-largest silver district (behind only the Comstock Lode) in Nevada
- Stope optimized mineral resource estimate of 2.975M tonnes grading 446 g/t AgEq for 42.65M ounces AgEq **
- One of the highest-grade undeveloped silver projects of size in the world***
- 150,000 metres of drilling completed since 2020

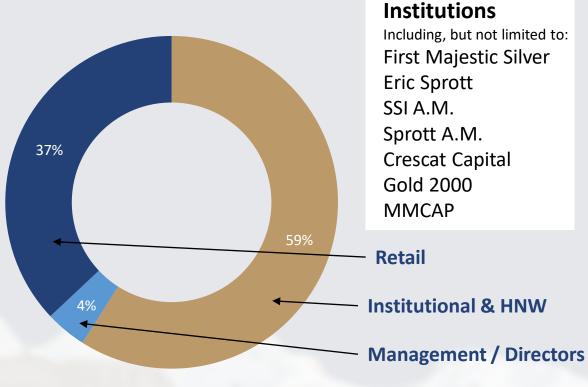
Tonopah North: Emerging New Lithium Discovery

- Option earn-in established with Tearlach Resources that upon incurring cumulative exploration expenditures of US\$15,000,000 and the completion of a Feasibility study within 5 years will form 70/30 IV ****
- Lithium values up to 1,217 ppm lithium have been intercepted in drilling, in addition to continuity of broad zones of mineralization up to 56.4 metres in thickness;
- Adjacent to American Lithium's TLC Project*****

Silver Cloud: New Bonanza Discovery

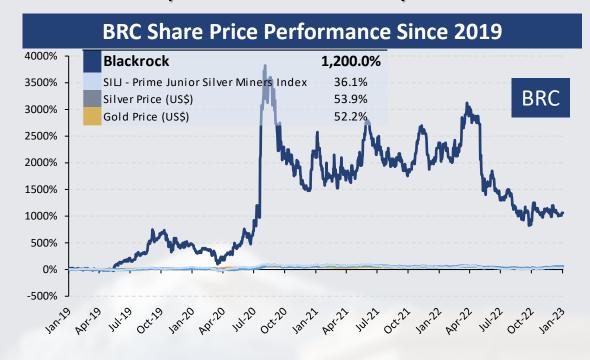

Nevada's newest bonanza grade discovery: SBC22-020, which intersected 70 g/t gold (2.0 opt) and 606 g/t silver (17.68 opt) over 1.5 metres in the Northwest Canyon area****

*All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AuEq = (historic silver production times historic silver price) divided by historic gold price) plus historic gold production AgEq = (historic gold production times historic gold price) divided by historic silver price) plus historic silver production **Technical information relating to the Tonopah West Project is based on and derived from the NI 43-101 report prepared for Blackrock entitled "Technical Report and Estimate of Mineral Resources for the Tonopah West Silver-Gold Project, Nye and Esmeralda Counties, Nevada, USA" effective April 28, 2022 (the "Technical Report"). AgEq equivalent grade is based on silver and gold prices of US\$20/ounce and US\$1750/ounce, respectively, and recoveries for silver and gold of 87% and 95%, respectively. *****See news release dated January 10,2023


***Source: S&P Global; Company reports as of January 28, 2023. AgEg resources and grade reflect only silver and gold (M&I and I) resources (excludes base metals) for deposits larger than 40 million ounces AgEq.

***** See news release dated January 17, 2023

******There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Tonopah North Project



STOCK INFO

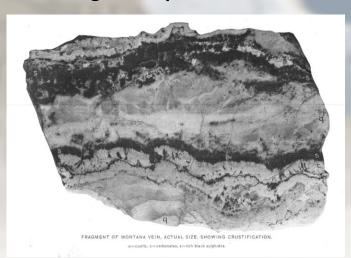
Capitalization and Balance Sheet (C\$)									
Shares Issued	178,746,729								
Fully Diluted	223,256,039								
Market Cap (@ C\$0.50 as of February 01st, 2023)	C\$89.4M								
Recent Financing: Closed August 30, 2022	C\$6.28M								
52 Week High/Low	C\$1.30/C\$0.37								

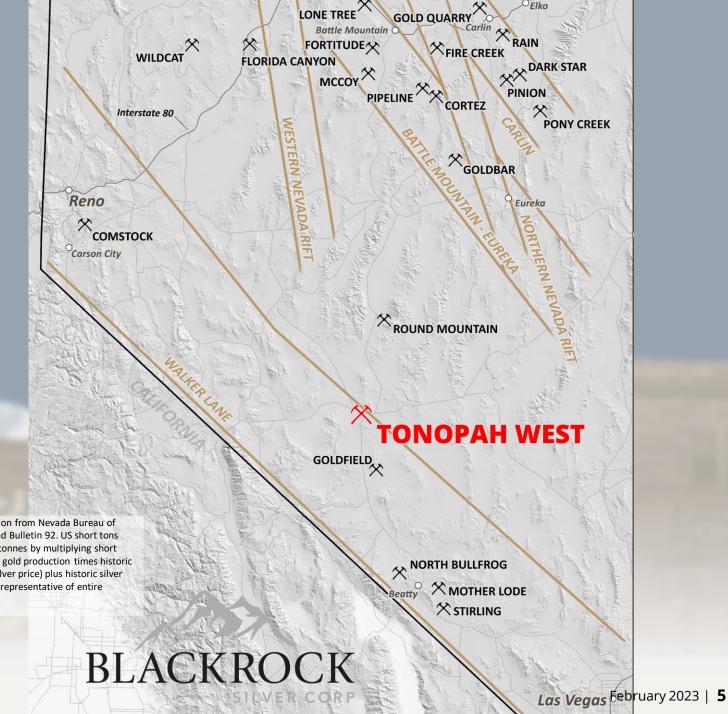
TSX-V: BRC | OTC: BKRRF | FSE: AHZO

Analyst Coverage

Stuart McDougall

Taylor Combaluzier




TONOPAH SILVER DISTRICT

The Queen of the Silver Camps

- One of the largest historic silver districts in North America, producing 174 Mozs Ag & 1.8 Mozs Au from 7.5m tonnes
- Mined from underground from 1900 to 1930, with peak years producing up to 14,000,000oz/ year AgEq; Victor vein was 24m thick where production ceased
- Newly consolidated land package consists of 100 patented & 279 unpatented mining claims covering 25.5sq km (6,300 acres); largest claim package in **Tonopah silver district**
- First group to conduct exploration targeting historic workings; multiple historic mines on property

All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AgEq = (historic gold production times historic gold price) divided by historic silver price) plus historic silver production. Production figures representative of entire

STOPE OPTIMIZED MINERAL RESOURCE ESTIMATE

A 400	Cut-off	Block Model Value US\$/tonne	AgEq	Tonnoo	Block Diluted Grades			Ounces of	Ounces of	Ounce of	Classification ⁽³⁾	
	US\$/tonne ⁽¹⁾		cutoff g/t	Tonnes	Silver g/t	Gold g/t	AgEq g/t	Silver	Gold	Silver Equivalent ⁽²⁾	classification	
DPB	118	230	211	1,281,000	198	2.3	415	8,150,000	94,000	17,100,000	Inferred	
Victor	107	251	190	1,694,000	216	2.7	469	11,752,000	144,000	25,514,000	inferred	
TOTAL	112	242	200	2,975,000	208	2.5	446	19,902,000	238,000	42,614,000	Inferred	

Parameters Used	Longhole USD	C&F USD	Units		
UG Mining	70	100	\$/t Mined		
Processing	24	24	\$/t Processed		
G&A	13	13	\$/t Processed		
Silver Price	20	20	\$/ounce		
Gold Price	1750	1750	\$/ounce		
Total	107	137	\$/t Processed		
Effective AgEq Cut off	190	244	g/t Ag		

1-US\$ cutoff is weight average of longhole stope material at \$107/tonne and cut-and-fill material at \$137/tonne

2-Silver Equivalent grade is based on silver and gold prices of US\$20/ounce and US\$1750/ounce, respectively, and recoveries for silver and gold of 87% and 95%, respectively.

3-The MRE is presented as a stope optimized resource. Optimized stopes have a width of 1.5 metres, and a height and minimum length of 4 metres. The optimization resulted in stopes ranging from 4 metres to 100 metres in length.

4-Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources estimated will be converted into mineral reserves. The quantity and grade of reported Inferred mineral resources in this estimation are uncertain in nature and there has been insufficient exploration to define these Inferred mineral resources as Indicated mineral resources. It is uncertain if further exploration will result in upgrading them to the Indicated mineral resources category. Technical information relating to the Tonopah West Project is based on and derived from the NI 43-101 report prepared for Blackrock entitled "Technical Report and Estimate of Mineral Resources for the Tonopah West Silver-Gold Project, Nye and Esmeralda Counties, Nevada, USA" effective April 28, 2022

SILVER EXPLORERS/DEVELOPERS BY GRADE, RESOURCE & IN SITU MULTIPLES

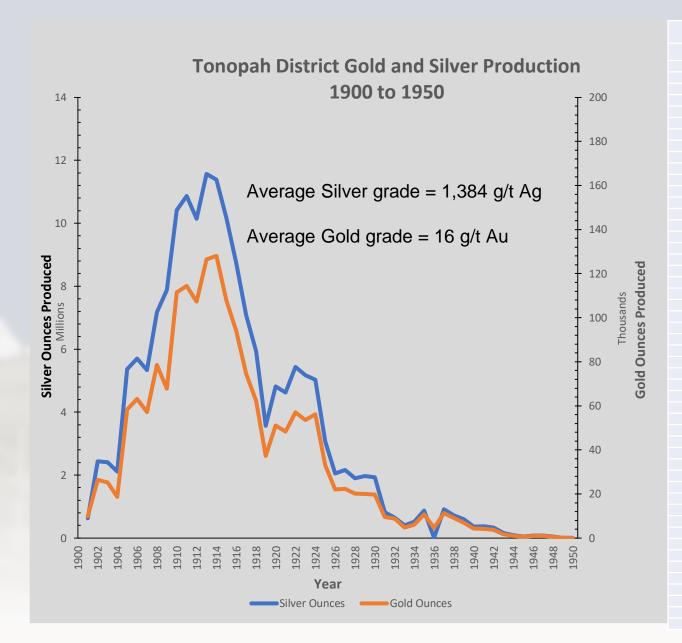
Notes:

- Total resource grade (g/t) and contained metal (M oz) is shown on a silver equivalent basis and only precious and base metals). Silver equivalent grade (g/t) and resources (M oz) are calculated using spot metal prices as of January 31, 2023 of US\$23.73/oz Ag, US\$1,928.18/oz Au, US\$4.23/lb Cu, US\$1.55/lb Zn and US\$0.97/lb Pb
- Defiance Silver Corp.'s average grade and resources excludes the Tepal Project, which is in the process of ongoing litigation regarding its ownership
- Shown as of January 31, 2023. Sourced from company reports and S&P Capital IO


TONOPAH WEST PROJECT

Ranch hand and part-time prospector Jim Butler and his trusty mule stumble on silverrich veins near Tonopah Springs in the springof 1900

*All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AgEq = (historic gold production times historic gold price) divided by historic silver price) plus historic silver production Historic production representative of entire



- Tonopah: A high-grade low sulfidation epithermal district
- Production: ~1.86 Moz Au, 174 Moz Ag from 7.45m tonnes
- Silver Primary District: 100 to 1 Silver/Gold ratio
- Tonopah West: 1st ever consolidated ownership
- High Grade: 50 years of historic production averaged 1,384 g/t silver and 16 g/t gold
- **Tailings:** Tonopah Extension Mill Tailings and mine dumps

TONOPAH DISTRICT GOLD AND SILVER PRODUCTION

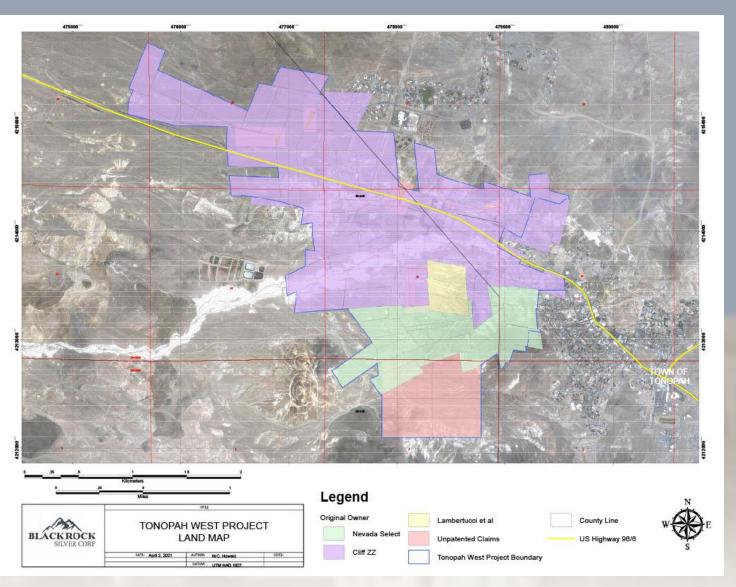
All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AuEq = production AgEq = (historic gold production times historic gold price) divided by historic silver price) plus historic silver production. Reported production from entire district.

Year	Tons	Tonnes	Gold Ounces	Silver Ounces
1900	1	0.9		
1901	2,534	2,298.8	9,774	623,516
1902	11,258	10,213.3	26,463	2,434,453
1903	9,055	8,214.7	25,298	2,404,180
1904	22,703	20,596.2	18,703	2,115,191
1905	91,651	83,145.8	58,357	5,369,439
1906	106,491	96,608.6	63,114	5,697,928
1907	214,608	194,692.4	57,250	5,330,398
1908	273,176	247,825.3	78,585	7,172,386
1909	278,743	252,875.6	67,742	7,872,967
1910	365,139	331,254.1	111,442	10,422,869
1911	404,375	366,849.0	114,479	10,868,268
1912	479,421	434,930.7	107,219	10,144,987
1913	574,542	521,224.5	126,445	11,563,437
1914	531,278	481,975.4	128,117	11,388,452
1915	516,337	468,420.9	107,836	10,171,374
1916	455,140	412,903.0	93,925	8,734,726
1917	470,122	426,494.7	74,481	7,068,737
1918	501,190	454,679.6	62,300	5,929,920
1919	268,658	243,726.5	37,339	3,568,875
1920	387,489	351,530.0	51,136	4,816,055
1921	367,909	333,767.0	48,335	4,623,901
1922	472,865	428,983.1	57,053	5,436,080
1923	371,946	337,429.4	53,571	5,176,306
1924	285,707	259,193.4	56,216	5,032,043
1925	197,409	179,089.4	33,073	3,070,409
1926	127,252	115,443.0	21,967	2,052,956
1927	125,790	114,116.7	22,256	2,167,694
1928	103,109	93,540.5	20,079	1,900,315
1929	121,447	110,176.7	20,059	1,965,595
1930	114,499	103,873.5	19,656	1,931,194
1931	16,534	14,999.6	9,583	823,872
1932	10,604	9,619.9	8,791	646,687
1933	4,786	4,341.9	4,679	400,379
1934	11,890	10,786.6	6,024	513,032
1935	196,710	178,455.3	10,708	874,860
1936	39,387	35,731.9	4,586	5,388
1937	118,407	107,418.8	11,289	916,513
1938	19,598	17,779.3	9,181	715,266
1939	18,767	17,025.4	6,925	596,173
1940	11,879	10,776.6	4,252	358,018
1941	11,243	10,199.6	4,121	377,534
1942	68,155	61,830.2	3,710	334,712
1943	5,123	4,647.6	1,709	159,141
1944	4,121	3,738.6	1,029	91,215
1945	1,845	1,673.8	596	48,434
1946	2,268	2,057.5	911	75,840
1947	1,993	1,808.0	941	76,091
1948	1,723	1,563.1	468	45,938
1949	91	82.6	38	3,817
1950	64	58.1	24	2,336

TONOPAH WEST: PICKING UP WHERE HISTORIC MINERS LEFT OFF

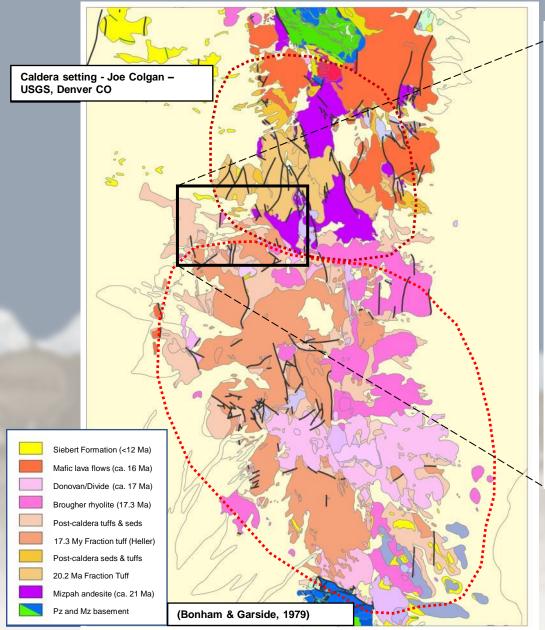
Amalgamation of West End Mining Company and Tonopah Extension Mining Company. This property represents the 3rd largest producer in the district.

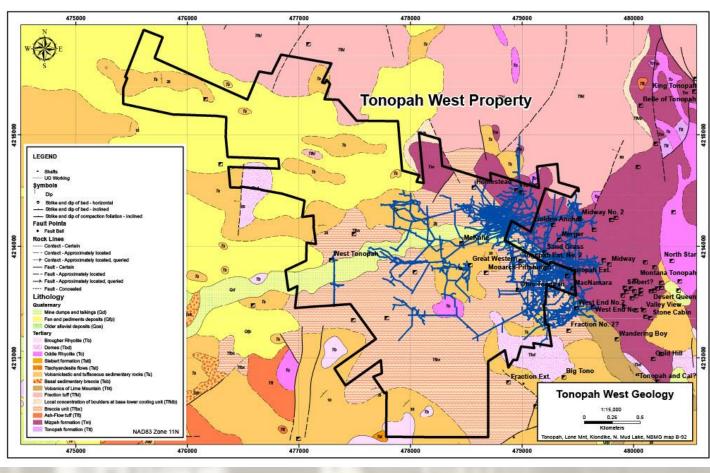
Purple - Tonopah Extension Mining Company land (in purple) has never been worked since 1928. Held by private individual until 2017. One hole drilled by Chevron in 1985.


Green - West End Mining Company explored by Howard Hughes, Houston Oil and Minerals, Eastfields. Discovery of the Three Hills deposit in 1996.

Yellow – Acquired from Lambertucci Roma of Nevada

Pink - Staked unpatented mining claims




Tonopah Silver District in 1912- BRC now controls western half BLACKROCKSILVER.COM | TSX-V: BRC | OTC: BKRRF | FSE: AHZ

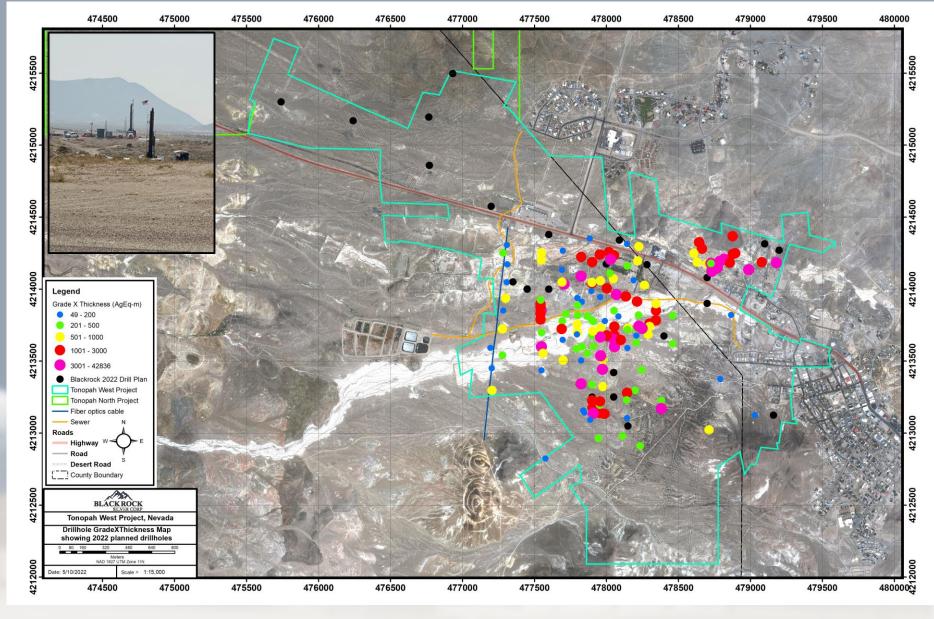
100 patented mining claims and 19 unpatented mining claims

TONOPAH DISTRICT & TONOPAH WEST GEOLOGY MAP

Underground workings

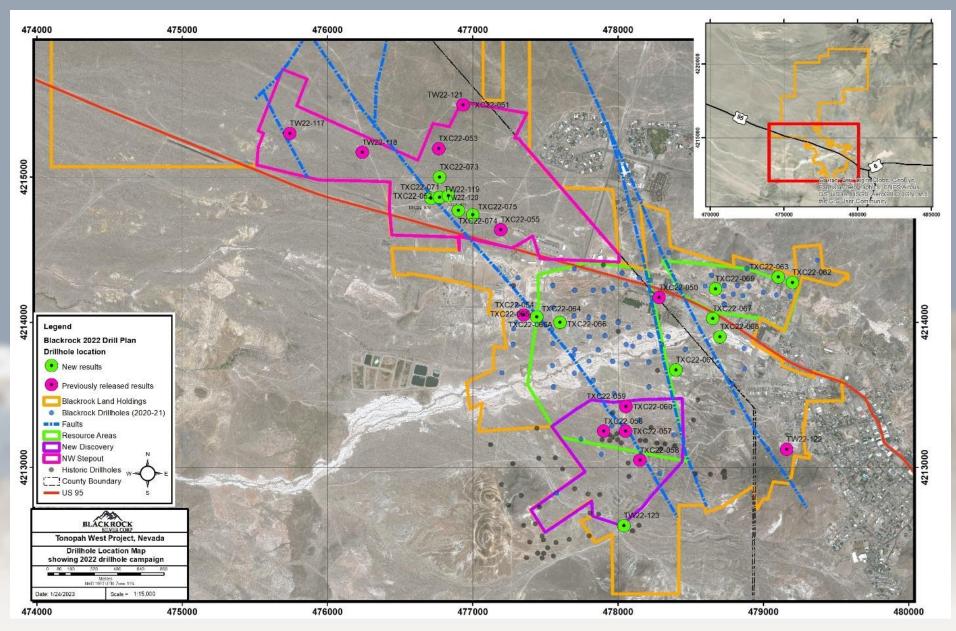
- 55 Km (34 mi)
- 4 main levels 800, 1200, 1540 & 1880
- No stoping below 1540 level in DPB
- Mining stopped because of technical issues

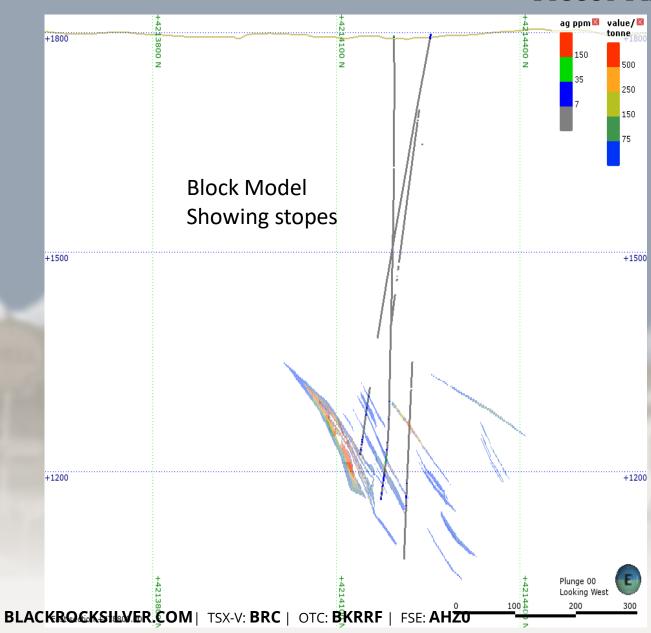
HIGH GRADES; YEAR ROUND DRILLING

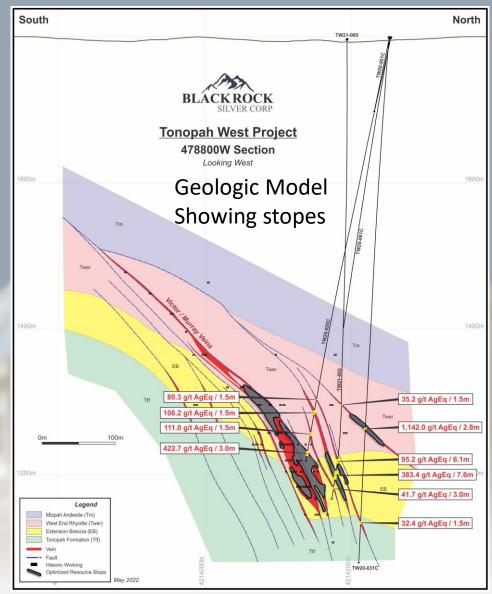

With over 150,000m of drilling completed since June 2020,
Tonopah West is the most active silver exploration project in North America

Significant intercepts range from 1 to 29 metres in thickness, with grades up to 6,526 g/t AgEq (up to 37 g/t gold, 2,740 g/t silver)

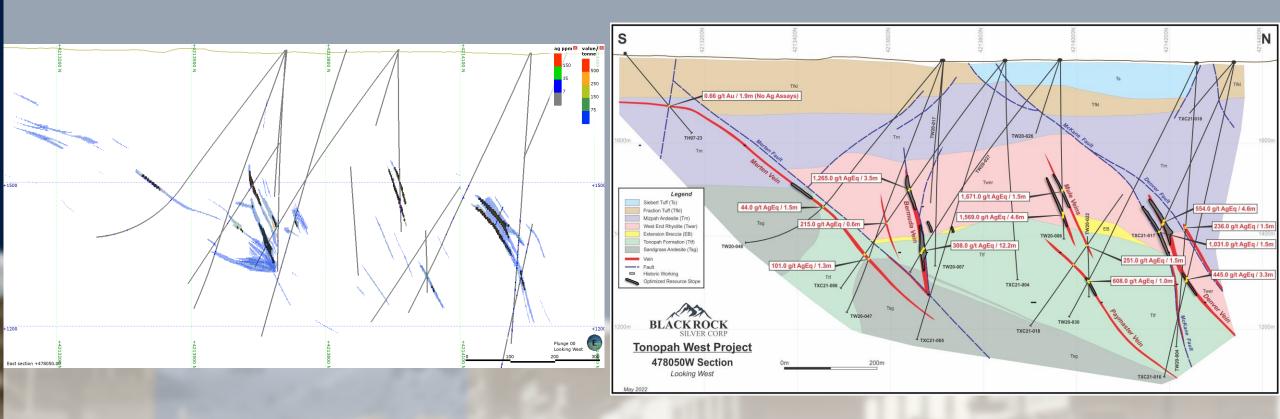
10 veins now established ranging from 425m up to 3km in drill-defined strike; remains open to northwest, south, and at depth


Big ROI via drill-bit: All-in discovery costs (exploration, project holding/option costs, G&A) of \$0.62/ounce AgEq



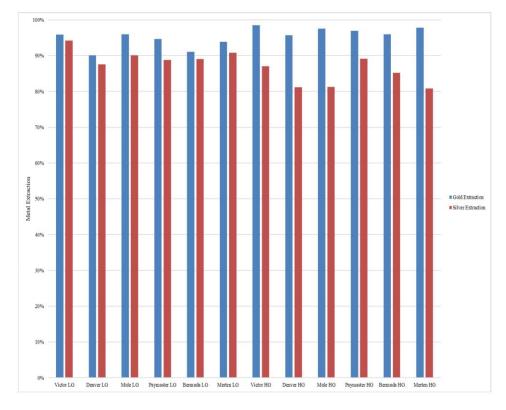

CLEAR RESOURCE EXPANSION POTENTIAL Tonopah West drillhole location map showing the location of drillholes mentioned in Jan 23 news release (green dots)

- Step-out drilling continues to expand the mineralized footprint well beyond the April 2023 resource boundary and remains open to the south, northwest, and at depth
- TXC22-074 cut **4.36 metres** grading 2.36 g/t gold and 162.5 g/t silver (399.3 g/t AgEq) including 1.5 metres grading 712 g/t AgEq (3.78 g/t Au and 334 g/t Ag), suggesting a strongly mineralized northwest structure
- The Denver vein system now has now been tracked an additional 1.6km's to the northwest beyond the DPB resource area


MINERAL RESOURCE ESTIMATE: Victor Area

Silver Equivalent grade is based on silver and gold prices of US\$20/ounce and US\$1750/ounce, respectively, and recoveries for silver and gold of 87% and 95%, respectively

MINERAL RESOURCE ESTIMATE DPB AREA


Block Model Showing stopes Geologic Model Showing stopes

WORLD CLASS RECOVERIES

Figure 1-1.

Tonopah West Project - Metallurgical Test Work

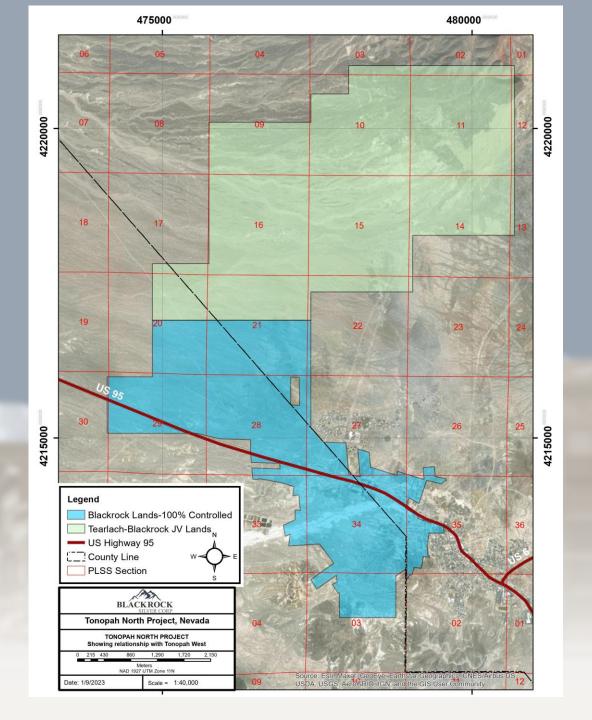
Figure 1-1.
Tonopah West Project
Gold and Silver Extraction

Kappes, Cassiday & Associates

Page 1-7

2023: Initial Met Test Work

- Appears amenable to standard cyanidation processing with average recoveries of 95% Gold and 87% Silver;
- Gold recoveries range between 90% to 98% and Silver recoveries between 81% and 94%;
- The Merten vein returned an average Gold recovery of 96% and a Silver recovery of 90%; the high-grade Bermuda vein yielded average recoveries of 93.5% for Gold and 91% for Silver*


^{*}See news release dated January 6, 2022

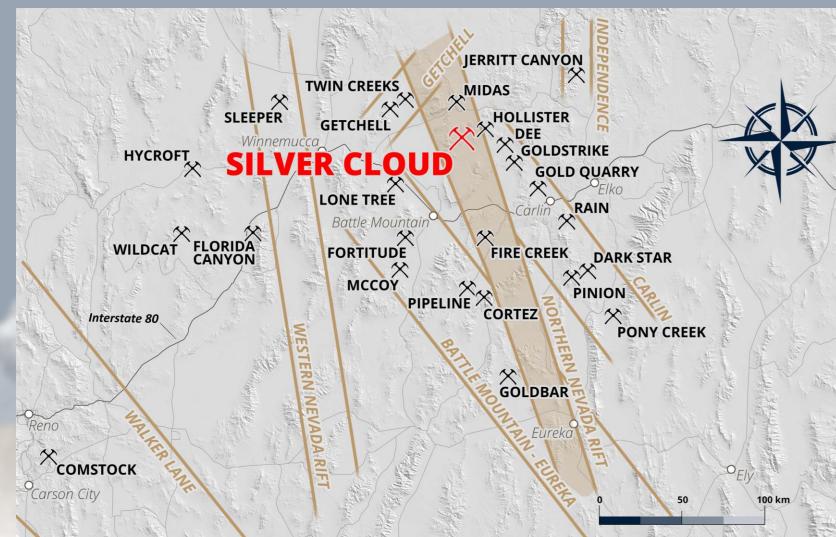
TONOPAH NORTH LITHIUM

- Large land package consists of 260 unpatented mining claims covering 20 sq km adjacent to Tonopah West vein system to south and American Lithium's TLC Project to northwest.
- Option earn-in agreement established with Tearlach Resources with cumulative exploration expenditures of US\$15,000,000 and delivery of a feasibility study within 5 years to establish 70/30 JV on lithium minerals*
- This agreement provides Lithium mineral rights to 650 ft below surface, and retains prospectivity to continue exploration at depth for silver-gold mineralization across entire project
- Lithium values up to 1,217 ppm lithium have been intercepted in drilling, in addition to continuity of broad zones of mineralization up to 56.4 metres in thickness*;
- The average thickness of the lithium bearing zone is 28.1 metres;
- The lithium bearing zone comes within 8 metres of the surface on the northeast portion of the property and has been intersected down to 117 metres below the surface.
- DPB vein system tracked to Tonopah West- Tonopah North property boundary and remains open to NW
- Phase 2 core drill program to commence in February 2023

^{*}see news releases dated October 25, 2020 and January 10, 2023

There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Tonopah North Project

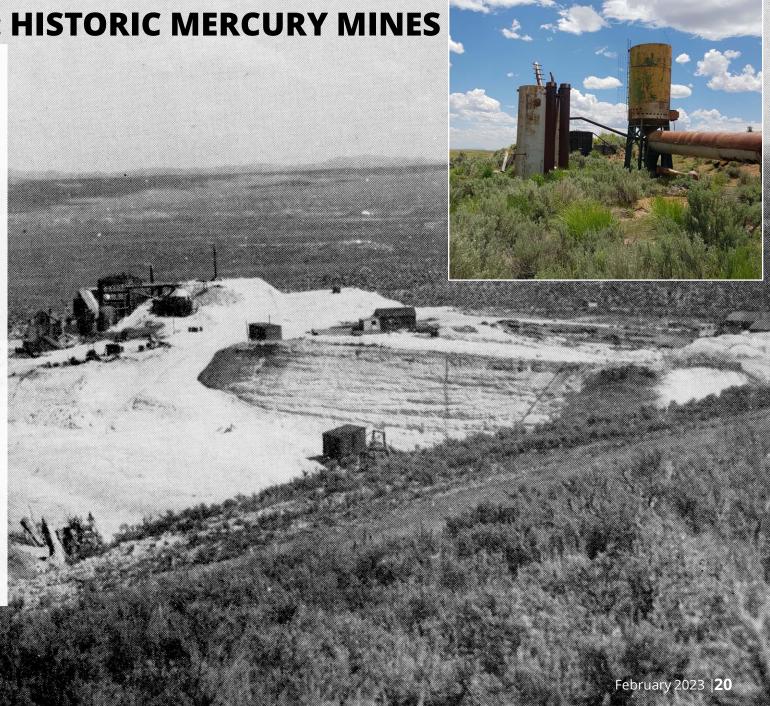
Infrastructure, Electricity, Casinos...

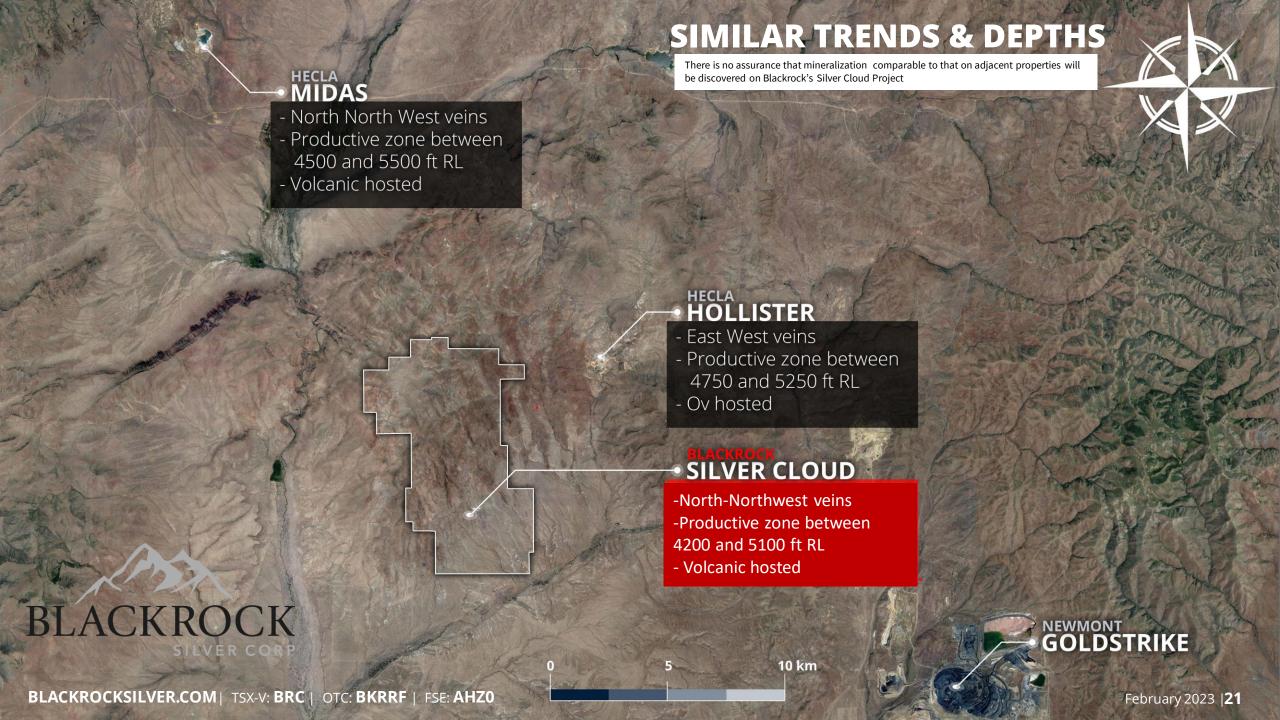


SILVER CLOUD

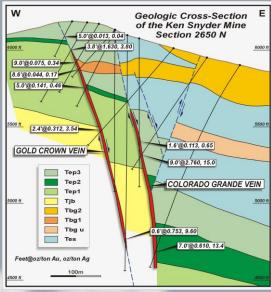
The Richest Gold Mining Area In North America

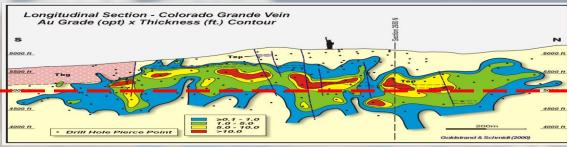
- Large land package consists of 572 mining claims covering 45sq km (+12,000 acres)
- Centered on the Northern Nevada Rift, adjacent to Hecla's Hollister mine
- Former Teck, Placer Dome, and Newmont project with multiple high-grade gold intercepts encountered on limited drilling (~8000m)
- 3 core drillhole programme completed in November 2022 led to Nevada's newest bonanza grade discovery: SBC22-020 intersected 70 g/t gold (2.0 opt) and 606 g/t silver (17.68 opt) over 1.5 metres in the Northwest Canyon area*
- SBC22-020 was directed at a conceptually projected structure based on results received from Blackrock's SBC19-002 (8.32 g/t gold over 1.52m) and Placer Dome's SCP-15 (5.61 g/t gold over 12.2m). These assay intercepts represent a high-grade drill defined structure separated by 425 metres


*See news release dated January 17, 2023

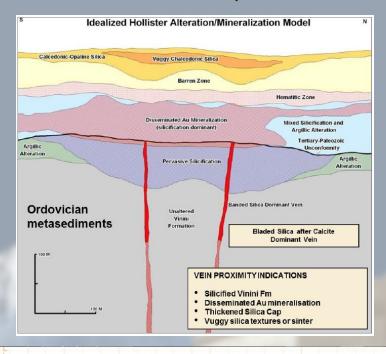

There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Silver Cloud Project

LS EPITHERMAL PATHFINDERS: HISTORIC MERCURY MINES


- Mercury and arsenic are the ultimate pathfinder elements for low-sulphidation epithermal gold deposits
- The Silver Cloud project is named after the past producing Silver Cloud gold mine where past high-grade intercepts were encountered by Teck and Placer Dome
- The property hosts another past producing mercury mine on the northeastern section, directly adjacent to Hecla's Hollister Mine.
 This area has never seen any drilling, and with 8 exposed veins found at surface it is now a priority target for Blackrock


There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Silver Cloud Project

COMPARISON OF MIDAS & HOLLISTER MINES

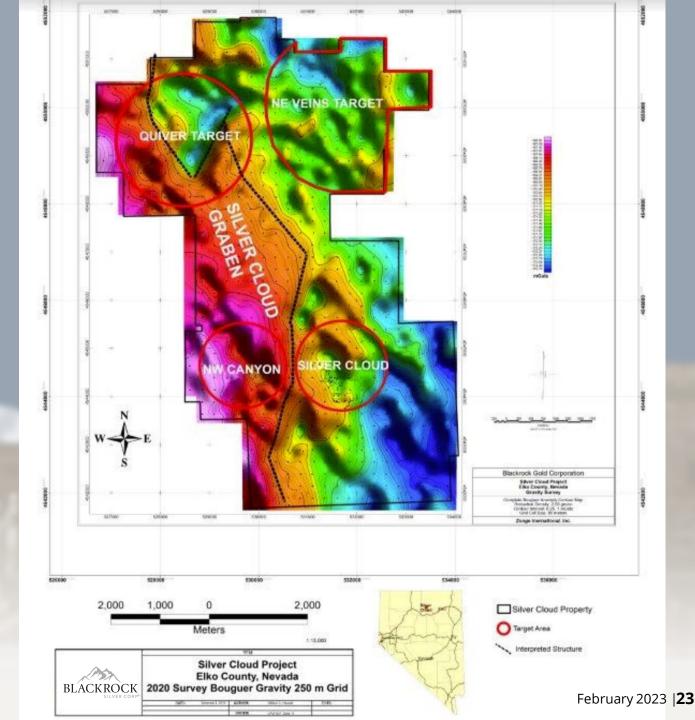


Midas Mine

- NNW-NW oriented veins
- Productive zone between 4500 and 5500 ft RL
- Volcanic hosted Miocene Elko Prince
- Veins 1.5m to 3m wide BLACKROCKSILVER.COM| TSX-V: BRC | OTC: BKRRF | FSE: AHZO

There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Silver Cloud Project

5000 ft RL


Hollister Mine

- E-W oriented veins
- Productive zone between 4750 and 5250 ft RL
- Sediment hosted Ordovician Vinni Fm.
- Veins 1m to 2m wide

A TALE OF TWO GEOLOGIES

- Enhanced Gravity survey indicates two distinct geologic systems cutting across the entire property
- Newly-identified Silver Cloud Graben cuts across western half of project, providing for a thick volcanic rock package that highlights major similarities to structural architecture found at the nearby Midas mine.
- The eastern half of the project looks to share a similar structural setting to the adjacent Hollister mine, which is hosted in the Paleozoics.*

^{*}There is no assurance that mineralization comparable to that on adjacent properties will be discovered on Blackrock's Silver Cloud Project

LEADERSHIP

Bill Howald

Executive Chairman

William (Bill) Howald is a successful entrepreneur who founded several public companies as well as led the exploration division of a major mining company. To date, Bill has raised approximately \$300 million in project financing. Prior to creating junior mining companies, he was General Manager of Exploration, United States and Latin America, for Placer Dome Inc. During his tenure at Placer Dome, Mr. Howald was an integral part of the teams that delivered over 100Mozs of gold resources where he also oversaw the last systematic drilling campaign done on Silver Cloud. He is a Certified Professional Geologist, and a Qualified Person as defined by NI 43-101.

Andrew Pollard

President & CEO, Director

Prior to joining Blackrock as President & CEO in 2019, Andrew Pollard had established himself as a sought-after management consultant within the mining industry. Mr. Pollard founded the Mining Recruitment Group Ltd (MRG) in 2006 and has amassed a "Who's Who" network in the mining & finance world, leveraging his personal relationships to help shape what have become some of the most prominent and successful resource companies. In a sector where management is crucial, he has served as a trusted advisor to exploration companies and producers ranging in size from seed round through to over \$100 billion in market capitalization.

Daniel Vickerman

SVP Corporate Development, Director

Mr. Vickerman is a seasoned institutional sales and corporate finance professional with 25 years of experience in the financial industry and formerly, Managing Director, Head of UK of Beacon Securities UK and former Managing Director, Head of UK for Edgecrest Capital. Prior to joining Edgecrest Capital UK, Mr. Vickerman was Managing Director, Co-Head of Canadian Equity Sales UK at Canaccord Genuity Corp. Mr. Vickerman also formerly worked at Thomas Weisel Partners Group Inc. where he served as Senior Vice President. Daniel spent over 4 years at a London based Alternative asset manager with over \$400 million AUM, trading commodities and FX. Mr. Vickerman has extensive experience working with mineral exploration and development companies, raising over \$1bln for private and listed companies.

He holds a Bachelor of Arts, Economics from the University of Western Ontario and currently serves as an Independent Director of Discovery Metals Corp.

LEADERSHIP

David Laing

Director

David Laing is a mining engineer with 40 years of experience in the industry. He is an independent mining executive. David was formerly the COO of Equinox Gold, with gold projects in Brazil and California, COO of True Gold Mining which developed a gold heap leaching operation in Burkina Faso, and COO and EVP of Quintana Resources Capital, a base metals streaming company. David was also one of the founding executives of Endeavour Mining, a gold producer in West Africa.

Prior to these recent roles, David held senior positions in mining investment banking and debt advisory at Endeavour Financial, and Standard Bank in New York.

Mr. Laing currently serves as Independent Director of Fortuna Silver Mines Inc., Northern Dynasty Minerals Ltd, and Aton Resources Inc. He also serves as an Advisor to Endeavour Financial Ltd.

Tony Wood

Director

Tony Wood currently serves as Chief Financial Officer of Aurania Resources Inc. Mr. Wood's executive experience includes oversight of finance and operations of various publicly-traded exploration, development, and production staged resource companies. Over the last 20 years, he has successfully completed close to \$1billion in financing and M&A transactions in the mining industry. Mr. Wood has a proven record of success with strategic planning, organizational development, and company transformations. He has been instrumental in achieving performance and value growth across diverse commodities, countries and market conditions.

Mr. Wood is an honours graduate, Management Sciences (Marketing) B.Sc. from the University of Lancaster, U.K., and a qualified Chartered Accountant in the UK and Canada.

Edie Thome

Director

Ms. Edie Thome brings a wealth of senior leadership and board experience specifically in the area of ESG as it relates to strategy, operations and projects. Her work experience includes government relations, governance, environmental permitting and compliance as well as on-theground experience working with First Nations and Indigenous groups, stakeholders, elected officials and land owners on projects and operations in the natural resource sector.

Ms. Thome was the President & Chief Executive Officer of The Association for Mineral Exploration (AME) in Vancouver, British Columbia. Prior to that appointment, as the Director - Environment, Permitting and Compliance, Aboriginal Relations and Public Affairs at BC Hydro, she was responsible for permitting and compliance, Aboriginal relations and government/public affairs for the Site C Clean Energy Project.

Currently, Ms. Thome serves as an independent director for Wesdome Gold Mines Ltd., as well as a consulting advisor to industries integral to global economies.

Andrew Kaip

Lead Director

Mr. Kaip brings over 25 years of experience within the mining business as an executive, geologist, and equity analyst covering the precious metals sector. He currently serves as President and CEO of Karus Gold and a Director of VOX Royalty. Prior to these appointments, he served as Managing Director at BMO Capital Markets where he was co-head of global mining research. In 2010, Mr. Kaip initiated coverage of the silver equities for BMO Capital Markets. During his tenure as their silver analyst, Mr. Kaip was consistently ranked the top Small/Mid Cap Precious Metal analyst by Brendan Wood International. Prior to mining research, Mr. Kaip was a geologist working on projects throughout North, South and Central America. Mr. Kaip is a Professional Geoscientist and holds a B.Sc. in Geology and Earth Science, from Carlton University and a Master's in Geology and Earth Science, from the University of British Columbia.

WHY BRC?

Creating Value Through Discovery:

BLACKROCK

High-Grade Gold, Silver & Lithium in the Heart of Nevada

Tonopah West & Tonopah North

- Newly consolidated land package consists of 100 patented & 279 unpatented mining claims covering 25.5sq km (6,300 acres) in **one of largest known high-grade silver districts in North America.**
- Stope optimized maiden mineral resource estimate of 2.975m tonnes grading 446 g/t AgEq for 42.65m ounces, AgEq making Tonopah West the highest-grade undeveloped silver project of size in the world, with clear resource expansion potential*
- 150,000m core & RC drilling completed since June 2020 making this the most active silver exploration project in North America
- 2022 exploration program more than doubled the footprint of mineralization beyond maiden resource boundary
- Tonopah North lithium discovery under US\$15,000,000 option earn-in agreement with Tearlach Resources **

Silver Cloud

- Compelling grassroots exploration opportunity with a large land package of over 45 sq km within the richest gold-mining area in North America, where
 two prolific gold belts meet
- Three core holes totalling 1,447 metres (4,746 ft) in two target areas on the Silver Cloud project completed in November 2022, leading to new bonanza grade discovery***
- SBC22-020 intersected 70 g/t gold (2.0 opt) and 606 g/t silver (17.68 opt) over 1.5 metres, along a drill-defined structure tracked over 425 metres

^{*}Information relating to the Tonopah West Project is based on and derived from the NI 43-101 report prepared for Blackrock entitled "Technical Report and Estimate of Mineral Resources for the Tonopah West Silver-Gold Project, Nye and Esmeralda Counties, Nevada, USA" effective April 28, 2022 (the "Technical Report"). AgEq equivalent grade is based on silver and gold prices of US\$20/ounce and US\$1750/ounce, respectively, and recoveries for silver and gold of 87% and 95%, respectively. **See news release dated January 10,2023. ***See news release dated January 17, 2023

ADDENDUM - SIGNIFICANT INTERCEPTS

BLACKROCK

HOLEID	Area	From (m)	To (m)	Length (m)	Au_g/t	Ag_g/t	AgEq_g/t
TW20-001	Victor Vein	554.7	557.8	3.0	2.435	221.3	464.8
TW20-001	Victor Vein	560.8	563.9	3.0	11.518	1046.1	2197.9
Inclu	560.8	562.4	1.5	18.667	1736.7	3603.4	
TW20-001	574.5	603.5	29.0	5.291	435.7	964.8	
Inclu	ıding	582.2	592.8	10.7	7.941	623.1	1417.2
TW20-001	Victor Vein	612.6	615.7	3.0	1.925	135.1	327.6
TW20-003	Victor Vein	702.6	704.1	1.5	1.890	140.0	329.0
TW20-005	DPB	402.3	403.9	1.5	1.630	182.3	345.3
TW20-006	DPB	275.8	277.4	1.5	8.680	802.6	1670.6
TW20-006	DPB	321.6	326.1	4.6	9.036	673.1	1576.7
Inclu	ıding	323.1	326.1	3.0	12.633	952.0	2215.3
TW20-006	DPB	327.7	329.2	1.5	2.170	163.0	380.0
TW20-007	DPB	484.6	486.2	1.5	2.060	180.8	386.8
TW20-008	New Discovery	242.3	243.8	1.5	3.430	218.6	561.6
TW20-012C	Victor Vein	581.9	583.4	1.5	2.670	223.5	490.5
TW20-016	Step Out	233.2	234.7	1.5	4.840	5.3	489.3
TW20-016	Step Out	307.9	309.4	1.5	1.780	144.6	322.6
TW20-016	Step Out	385.6	387.1	1.5	3.220	231.7	553.7
TW20-017	TW20-017 DPB		376.4	3.1	13.962	1070.2	2466.3
Inclu	ıding	376.4	378.0	1.5	26.133	2029.8	4643.1
TW20-017	DPB	440.4	442.0	1.5	2.840	221.9	505.9
TW20-020C	Victor	585.2	586.7	1.5	4.750	334.5	809.5
TW20-020C	Victor	592.2	593.1	0.9	19.000	1634.4	3534.4
TW20-021C	Victor	621.2	624.2	3.0	3.500	435.5	785.5
TW20-022	DPB	474.0	478.6	4.5	1.530	131.6	284.7
TW20-024C	Victor	521.5	523.1	1.6	2.050	210.0	415.0
TW20-024C	Victor	573.3	574.7	1.4	3.560	405.0	761.0
TW20-024C	Victor	580.0	582.4	2.4	3.948	364.0	758.8
TW20-027	DPB	474.0	475.5	1.5	1.650	120.0	285.0
TW20-027	DPB	495.3	507.5	12.2	1.508	146.4	297.2
TW20-027	DPB	518.2	519.7	1.5	1.090	121.0	230.0
TW20-027	DPB	548.6	551.7	3.0	1.545	157.0	311.5
TW20-030	DPB	522.7	524.3	1.5	1.350	153.0	288.0
TW20-031C	Victor	535.8	538.7	2.9	5.353	545.9	1081.2
TW20-034	DPB	426.7	428.2	1.5	1.240	94.2	218.2
TW20-034	DPB	477.0	478.5	1.5	1.270	137.0	264.0
TW20-034	DPB	480.0	481.6	1.5	0.978	105.0	202.8
TW20-037	DPB	275.8	278.9	3.0	10.510	1187.5	2238.5
TW20-040	DPB	481.6	483.1	1.5	1.960	164.0	360.0

HOLEID	Area	From (m)	To (m)	Length (m)	Au_g/t	Ag_g/t	AgEq_g/t	
TW20-041C			581.3	3.1	1.884	198.0	386.4	
Including		578.2	578.5	0.3	5.500	571.0	1121.0	
TW20-061C	Victor	631.6	650.1	18.5	1.539	142.0	295.0	
Inclu	ding	631.6	641.0	9.4	1.241	125.0	249.1	
Inclu	ding	631.6	633.0	1.3	4.350	354.0	789.0	
Inclu	ding	644.0	650.1	6.1	2.743	235.0	509.3	
Inclu	ding	648.6	650.1	1.5	9.830	808.0	1791.0	
TW21-054	DPB	400.8	403.9	3.1	4.780	286.0	764.0	
TW21-058	Step Out	317.0	318.5	1.5	1.290	94.5	223.5	
TW21-062	Step Out	397.8	400.8	3.1	6.150	388.0	1003.0	
Inclu		399.3	400.8	1.5	9.860	568.0	1554.0	
TW21-068	Step Out	385.6	387.1	1.5	1.600	178.0	338.0	
TW21-068	Step Out	410.0	414.5	4.5	6.564	743.0	1399.4	
Inclu		411.5	413.0	1.5	16.000	1722.0	3322.0	
TW21-076	DPB	143.2	155.4	12.2	2.538	14.9	268.7	
Inclu		146.3	150.9	4.6	5.372	22.9	560.1	
TW21-077	Victor	599.0	602.0	3.0	3.075	310.0	617.5	
Inclu		599.0	600.5	1.5	4.190	443.0	862.0	
TW21-077	Victor	606.5	614.2	7.6	2.139	230.0	444.0	
Inclu		609.5	611.1	1.5	4.890	512.0	1001.0	
TW21-079	DPB	201.2	204.2	3.0	1.485	130.1	278.6	
TW21-082	DPB	356.6	365.8	9.1	0.850	135.0	220.3	
Inclu		358.1	359.6	1.5	5 1.670 278.		445.0	
Inclu		364.2	365.7	1.5	2.330	393.0	626.0	
TW21-083	DPB	440.4	441.9	1.5	1.3	137.0	264.0	
TW21-085 Victor		594.4	599	4.6	3.113	275.6	338.9	
Including		597.4	599	1.6	7.12	577	1289	
TW21-090	Step Out	132.6	134.1	1.5	2.150	67.3	282.3	
TW21-092C	Victor W. Ext.	467.7	469.9	2.2	1.533	140.9	294.2	
Inclu	ding	467.7	468.7	1.0	2.860	250.0	536.0	
TW21-093C	Victor	494.3	495.1	0.8	1.930	207.0	400.0	
TW21-094C	Victor	527.8	532.2	4.4	1.837	140.8	324.5	
Inclu	ding	528.2	530.4	2.2 2.956		226.8	522.4	
TW21-094C	Victor	597.4	598.3	0.9	0.942	117.0	211.2	
TW21-094C	Victor	601.2	601.9	0.7	1.020	117.0	219.0	
TW21-095C	Victor	551.1	552.6	1.5	3.660	376.0	742.0	
TW21-095C	Victor	608.0	608.2	0.2	1.100	152.0	262.0	
TW21-096C	Victor	465.0	466.1	1.1	1.970	126.0	323.0	
TW21-096C	Victor	467.4	468.9	1.5	1.140	118.0	232.0	
TW21-097C	Victor	461.2	467.7	6.5	1.945	261.3	455.8	
Inclu	ding	464.5	466.1	1.6	5.260	655.0	1181.0	
TW21-097C	Victor	469.4	477.5	8.1	1.076	192.9	300.5	
TW21-097C	Victor	488.2	489.9	1.7	3.930	660.0	1053.0	
TW21-097C	Victor	499.3	500.9	1.6	0.917	122.0	213.7	
TW21-099	Sten Out	153 9	155 4	15	2.280	4.3	232.3	
TW21-099 TW21-099	Step Out Step Out	153.9 221.0	155.4 224.0	1.5 3.0	2.280 1.161	4.3 127.0	232.3 243.1	

						<u> </u>		
HOLEID	Area	From (m)	To (m)	Length (m)	Au_g/t	Ag_g/t	AgEq_g/t	
TW21-109	Step Out	553.2	554.7	1.52	2.000	298.0	498.0	
TW21-110	Step Out	260.6	262.1	1.52	2.030	7.5	210.5	
TW21-110	Step Out	341.4	342.9	1.52	1.460	157.0	303.0	
TW21-116	Victor	435.9	437.4	1.52	1.600	187.0	347.0	
TW21-116	Victor	519.7	521.2	1.52	1.490	144.0	293.0	
TW21-116	Victor	538.0	541.0	3.05	1.164	176.5	292.9	
TXC21-001	DPB	439.8	442.9	3.1	1.291	136.1	265.2	
TXC21-002	DPB	514.0	515.1	1.1	3.080	300.0	608.0	
TXC21-004	DPB	504.1	504.7	0.6	1.050	139.0	244.0	
TXC21-005	DPB	362.9	363.4	0.5	0.842	159.0	243.2	
TXC21-005	DPB	371.7	372.1	0.4	5.660	677.0	1243.0	
TXC21-005	DPB	399.0	400.0	1.0	1.300	135.0	265.0	
TXC21-006	DPB	348.7	352.2	3.5	7.281	510.9	1239.0	
Inclu	ıding	349.0	349.9	0.9	21.866	1355.0	3541.6	
TXC21-008	DPB	476.4	477.6	1.2	0.684	159.0	227.4	
TXC21-008	DPB	484.2	484.8	0.6	1.820	234.0	416.0	
TXC21-008	DPB	487.2	487.7	0.5	4.210	401.0	822.0	
TXC21-009	DPB	442.6	443.2	0.6	1.180	163.0	281.0	
TXC21-010	DPB	458.6	459.3	0.7	5.610	445.0	1006.0	
TXC21-010	DPB	472.9	475.3	2.4	4.040	301.2	705.1	
TXC21-010	DPB	527.6	528.2	0.6	27.500	1537.0	4287.0	
TXC21-012	DPB	403.4	403.7	0.3	1.900	127.0	317.0	
TXC21-012	DPB	406.5	407.1	0.6	0.904	142.0	232.4	
TXC21-015	DPB	554.7	556	1.3	2.190	260.0	479.0	
TXC21-015	DPB	610.5	611.9	1.4	0.783	120.5	198.8	
TXC21-015	DPB	625.3	626.3	1	2.400	297.0	537.0	
TXC21-016	DPB	477.4	480.7	3.3	2.256	222.7	448.3	
Inclu	ıding	477.4	477.9	0.5	5.520	494.0	1046.0	
TXC21-016	DPB	487.2	488.1	0.9	0.761	123.5	199.6	
TXC21-017	DPB	369.7	370.2	0.5	2.610	155.0	416.0	
TXC21-017	DPB	371.2	371.6	0.4	1.020	108.0	210.0	
TXC21-017	DPB	373.4	374.7	1.3	1.217	132.0	253.7	
TXC21-017	DPB	375.5	376.3	0.8	1.550	126.0	281.0	
TXC21-017	DPB	377.9	385.3	7.4	2.003	180.6	380.8	

ADDENDUM - SIGNIFICANT INTERCEPTS

BLACKROCK

HOLEID	Area	From (m)	To (m)	Length (m)	Au_g/t	Ag_g/t	AgEq_g/t	HOLEID	Area	From (m)	To (m)	Length (m)	Au_g/t	Ag_g/t	AgEq_g/t
TXC21-026	DPB	359.1	363.2	4.1	9.070	1120.0	2027.0	Inclu	ding	381	382.5	1.5	5.467	487.3	1034.0
Inclu	l iding	361.2	362.1	0.9	20.850	2994.5	5079.5	TXC21-017	DPB	395.3	396.4	1.1	1.465	148.5	295.0
TXC21-027	DPB	373.7	375.5	1.8	1.168	173.2	290.0	TXC21-017	DPB	397.6	401.1	3.5	2.560	279.2	295.0
TXC21-027	DPB	376.8	377.7	0.9	3.457	315.7	661.3	Inclu	ding	399.6	401.1	1.5	4.950	536.0	1031.0
TXC21-027	DPB	378.2	379.7	1.5	6.500	592.1	1242.1	TXC21-025	DPB	330	330.5	0.5	1.220	152.0	274.0
Inclu	ıding	379	379.7	0.7	12.100	1095.0	2305.0	TXC21-025	DPB	333.8	334.1	0.3	3.220	429.0	751.0
TXC21-028	DPB	524.9	526.1	1.2	4.420	68.4	510.4	TXC21-026	DPB	301.1	302.7	1.6	2.500	210.0	460.0
TXC21-030	DPB	446.8	449.9	3.0	1.600	162.5	322.5	TXC21-026	DPB	310	310.3	0.3	1.010	119.0	220.0
TXC21-030	DPB	545.6	545.9	0.3	2.170	244.0	461.0	TXC21-026	DPB	359.1	363.2	4.1	9.070	1120.0	2027.0
TXC21-031	DPB	388.2	388.7	0.5	1.930	229.0	422.0	Inclu		361.2	362.1	0.9	20.850	2994.5	5079.5
TXC21-032	DPB	361.8	363.3	1.5	1.810	190.0	371.0	TXC21-027	DPB	373.7	375.5	1.8	1.168	173.2	290.0
TXC21-035	DPB	396.9	397.2	0.4	4.970	9.5	506.5	TXC21-027	DPB	376.8	377.7	0.9	3.457	315.7	661.3
TXC21-036	DPB	507.5	508.1	0.6	1.480	128.0	276.0	TXC21-027	DPB	378.2	379.7	1.5	6.500	592.1	1242.1
TXC21-036	DPB	604.1	604.7	0.5	0.924	120.0	212.4	Inclu	ding	379	379.7	0.7	12.100	1095.0	2305.0
TXC21-039	DPB	299.9	300.8	0.91	8.510	850.0	1701.0	TXC21-028	DPB	524.9	526.1	1.2	4.420	68.4	510.4
TXC21-039	DPB	367.3	367.9	0.61	3.200	333.0	653.0	TXC21-020	DPB	488.6	492.1	3.5	2.419	258.3	500.2
TXC21-039	DPB	415.4	416.0	0.58	1.580	156.0	314.0	Inclu	ding	491.0	492.1	1.1	4.370	427.0	864.0
TXC21-039	DPB	417.9	418.7	0.82	1.090	96.8	205.8	TXC21-020	DPB	522.1	524.0	1.8	2.230	141.7	364.7
TXC21-039	DPB	471.4	471.8	0.46	1.070	103.0	210.0	TXC21-020	DPB	524.9	526.2	1.4	1.980	153.0	351.0
TXC21-039	DPB	487.6	488.0	0.34	1.260	109.0	235.0	TXC21-020	DPB	527.2	528.2	1.0	2.543	195.9	450.2
TXC21-040	DPB	544.4	545.1	0.70	1.560	155.0	311.0	TXC21-020	DPB	557.9	558.8	0.9	1.990	161.0	360.0
TXC21-042	DPB	435.9	436.8	0.91	2.730	262.0	535.0	TXC21-020	DPB	608.0	608.4	0.4	4.440	395.0	839.0
TXC21-045	DPB	563.6	564.3	0.73	2.270	380.0	607.0	TXC21-021	DPB	591.8	592.8	1.0	1.500	144.0	294.0
TXC21-045	DPB	565.1	567.1	2.00	3.640	377.3	741.3	TXC21-022	DPB	311.3	311.7	0.4	1.220	126.0	248.0
Inclu	uding	566.3	567.1	0.79	7.640	741.0	1505.0	TXC21-022	DPB	489.7	490.0	0.3	1.115	152.0	263.5
TXC21-047	DPB	428.9	430.1	1.22	1.710	30.3	201.3	TXC21-023	DPB	388.9	389.5	0.5	1.840	160.0	344.0
TXC21-048	DPB	432.2	432.5	0.31	1.390	117.0	256.0	TXC21-025	DPB	330	330.5	0.5	1.220	152.0	274.0
TXC21-048	DPB	475.8	476.3	0.55	8.392	875.5	1714.7								
Inclu	iding	475.8	476.1	0.31	11.267	1136.0	2262.7	TXC21-025	DPB	333.8	334.1	0.3	3.220	429.0	751.0
TXC22-050	DPB	434.5	435.0	0.46	3.890	812.0	1201.0	TXC21-026	DPB	301.1	302.7	1.6	2.500	210.0	460.0
AgEq_g/t = A	g_g/t + Au_g/t	*100; AuEq_g/		g_g/t/100. True ues	thickness un	known. NSV =	No significant	TXC21-026	DPB	310	310.3	0.3	1.010	119.0	220.0